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AIIItract-The axisymmetric naina process ofan elastic-p1astic cylinder under uniaxialstretchina
is analyzed by trcatina the problem IS an initial-vaIue-eipuvalue problem. One end of the cylinder
is subjected to a prescribed constant axial velocity relative to the other end and both ends arc shear
free. The eipnmodes of deviated motion departina from a uniform stretch beyond that of
quasi-static bifurcation by Hutchinson and Miles arc determined. Of all uniformly cxc:ited
eipnmodes ofmotion, only certain modes will &roW. The rate ofneckilll depends on the pometry,
material properties and stretcbina velocity of the cylinder.

I. INTRODUCTION

The phenomenon of localized necking in an elastic-plastic body under tensile loading has
been observed and studied by many investigators[I]. Most ofthe necking problems analyzed
are based on Hill's quasi-static theory of bifurcation and uniqueness[2]. In a quasi-static
sense, the problem of the onset of necking in an elastic-plastic cylinder under uniaxial
tension has been anaIyzed[3-S]. Hutchinson and Miles[S] have shown that the state of
uniform uniaxial tension is unique prior to the maximum support load of the specimen and
that the true stress at bifurcation is greater than that at the maximum load by an amount
which depends on the geometry and material properties.

Dynamically, the necking process of the cylinder is inftuenced by an additional factor of
stretching rate. There have been relatively few attempts to solve the dynamic problem. An
approach based on a one-dimensional formulation[6] has been suggested for determining
the dynamic axisymmetric necking process. In this paper, the axisymmetric necking process
ofan incompressible elastic-plastic cylinder under uniaxial stretching is further analyzed by
a two-dimensional formulation. The ends of the cylinder are stretched in such a way that
the ends remain free of tangential tractions and the lateral surface traction free. One end of
the cylinder is subjected to a prescribed constant axial velocity relative to the other end. The
axial velocity is relatively small in comparing with the elastic axial wave speed of the
cylinder. For continuity, the state of quasi-static bifurcation as determined by Hutchinson
and Miles[S] is employed as a reference state. The dynamic necking problem is solved by
employing a finite strain, dynamic, quasi-bifurcation theory[7, 8] which is briefly described
in the paper. Numerical results for a number of cylinders are presented and discussed.

2. QUASI-BIFURCATION

A certain motion of a system of II degrees of freedom is considered stable if, after a
sufficiently small disturbance, the system remains to follow the undisturbed motion. In other
words, the undisturbed motion is stable if the deviated motion, e,(t), r - I, ... ,II, the
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differ~nce between the disturbed and undisturbed motions in n generalized coordinates,
remams small.

For any deviated motion, stable or not, there is the following identity[8]:

I I r[ r rr ]2: ',(1)(,(1) = 2: 1',1', + Jo y,y, + Jo C" d1' + Jo (,(, d-r dl' (1)

in which dots indicate differentiation with respect to time 1and 1', and y, are the initial values
of the deviated motion. When the generalized forces, P" of the system are
configuration-dependent and when the deviated motion is relatively small, the deviated
motion is governed by the following variational equations [7]:

e~=A,.C.=LtP" r=l, ... ,n; s=l, ... ,n (2)

where the coefficients A,. are known functions of time depending on the undisturbed motion
only. In eqn (1), without loss of generality, the initial condition may be taken as 1', =0 at
a chosen time t = O. Consequently, eqn (1) shows clearly that the undisturbed motion is
unstable or the deviated motion grows monotonously when the quadratic term

(3)

is positive in a time period for any possible deviated motion. Furthermore, a variation of
Q yields the following relationship:

(4)

which may be employed, by appropriate coordinate transformation, to obtain equations of
motion in other generalized coordinates.

The quadratic form Qat a given time can always be reduced to a linear combination of
squares[9] such as:

Q = amTlm\ m = 1, ... , n (5)

where lXm(t) are the time-dependent eigenvalues, 11m are related to " by an orthogonal
transformation

c, = I".,Tlm, r = 1, ... , II (6)

where Imr are the directional numbers of n mutually orthogonal vectors, 11"" in the " space
known as eigenvectors or as eigcnmode of motion. Such transformation is called a
transformation to principal axes. In general, the directional numbers J"" may be time
dependent [8]. For cases where I"" are always constants (or nearly constant), a variation
of Q leads to the uncoupled ordinary differential equations

;;'" =lX,,11/(1' m = 1, ... ,n (7)

where the underscores are placed under the indices to suspend the summation convention.
If C, and 11, are normalized, Q assumes the greatest value equal to the largest eigenvalue,
lX", corresponding to the configuration 11" in the " space by a theorem of Weierstrasse[9].
Therefore, lX" and "" may also be determined by the extremum condition. If tXt > 0 and
oc" > oc, for r ¢ k, then the eigenmode of motion, 11k> grows at the highest rate, provided
that the initial disturbance has such a component. Such phenomenon is called a
quasi-bifurcation phenomenon. The above concept and approach are applied to the
solution of the present problem.

Of an elastic-plastic solid of a volume, V, let the undisturbed motion be described by
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the displacement UrlXM' t) in the XM Cartesian coordinate system. The deviated (or
additional) displacement is denoted by UrlXM' t). The corresponding Lagrangian strains
are e/CL and f./CL and the corresponding Piola-Kirchhoff stresses are S/CL and S/CL' re­
spectively. When Uk is relatively small, the additional strain, f./CL' is given by

(8)

and the deviated motion is governed by the following equation of motion:

(9)

where p is the initial mass density. The deviated motion satisfies the following boundary
conditions: urlXM, t) - 0 on that part of the boundary with prescribed kinematic condi­
tions and

(10)

on that part of the boundary with prescribed surface traction TM , where NK is the outward
unit normal to the surface. The quadratic term for the deviated motion of the
elastic-plastic continuum is given by

(11)Q(Uk)- Iv~PMuMdY- LpUMUMdY.

For a body which has no change in surface traction and no interior discontinuities of the
variables, the quadratic term may be simplified as

(12)Q(UK) - - Iv (S/CLUM,L +S/CLf.w dY.

The motion and its stability of such solid may be determined by analyzing the functional
Q(UK)'

By employing an appropriate constitutive relation, the function Qcan be expressed in
terms of the deviated displacement field UM' When the deviated motion is relatively smaU,
the disturbed and undisturbed motions have nearly identical histories such that S/CL appear
as small deviations from the stress path of S/CL in either loading or unloading condition.
Thus, the stress deviations may be expressed in terms of the strain deviations by a general
expression such as

(13)

{

CICLMN£MN for
S/CL - 1

CICLMfil.MN - gB/CLBMfil.MN

Here, CICLMN is the tensor of instantaneous elastic moduli, B/CL is the unit tensor normal
to the elastic domain in the strain-increment space, and g is a positive scalar which
determines the strain hardening of the material and depends upon the strain history of the
undisturbed motion. It is noted that the quasi-static bifurcation is characterized by the
occurrence of a non-zero solution, UM, to the variational equation 6Q - 0 as shown by
Hill [2].

3. AXIAL MOTION

Consider a solid circular cylinder having homogeneous elastic-plastic properties. One
end of the cylinder is subjected to a constant axial velocity v relative to the other end. It
is assumed that the axial velocity is low enough such that the axial stress waves have
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reflected many times throughout the length of the rod and that its dynamic state is the
nearly uniform state of uniaxial tension at a time prior to the beginning of the necking
process. It is also assumed that the ends are stretched in such a way that the ends remain
free of tangential traction and the lateral surface traction free. Consider that there exist
initial axisymmetric imperfections in the cylinder which are infinitesimal in magnitudes
such that they produce negligible disturbances to the nearly uniform state of uniaxial
tension prior to the bifurcation process. The imperfections may lead to an initial state of
the deviated motion. The onset of quasi-static bifurcation in the cylinder, which has been
determined by Hutchinson and Miles[5], occurs at a true axial stress (I•• This state of stress
is employed as a reference state which occurs at a time I =0 when the length and radius
of the cylinder are Land R, resp.

If initial imperfections or disturbances are absent, the dynamic state of the cylinder at
I > 0 is the nearly uniform state of axial tension with a true axial stress (I and a length
of (L +VI). This state is considered as the undisturbed state. Assuming the material is
incompressible, the second Piola-Kirchoffaxial stress, S.. may be expressed in terms of
the true axial stress as

(14)

(15)

where

c =!P and t =Z·
Here, E is the Young's modulus of elasticity and c the elastic wave speed. The true axial
stress may be expressed in terms of t by employing a Ramberg-Qsgood relation[lO]
between the true stress (I and natural strain e such as

e (I (3)( (I )1i;'=(1,+ "7 (I,
(16)

where e, and (I, =Ee, are the effective yield strain and yield stress and nis the hardening
exponent. Let E, be the tangent modulus for an uniaxial increment of true stress according
to

d(l
E,=-.

de

The derivative of the tangent modulus at the reference state is found to be

(17)

(18)

where E,' is the value of E, at (I•• Retaining only the first term of the Taylor's series
expansion of E, in the neighborhood of (I., it is found that

B
C

( B
C

)E, !ill E,c - (11 - 1) :c 1 - ~ (CT - CTc).
Following the definitions of E, and the additional natural strain

e = ( )'c 1+~

(19)

(20)
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the integration of (19) yields

901

where

E,t Et, ] ---'.AI=- "'2E' Ut

for 't' ~o (21)

4. DEVIATED MOTION

When the undisturbed motion is stable, all the disturbed motions will remain in the
neighborhood of the undisturbed motion. When unstable, only certain deviated motions,
however smaD in magnitude and whatever way excited initially, will grow and depart from
the neighborhood. The axisymmetric, deviated motions, of the cylinder may be described in
terms of the deviated displacements (u" u,) in a cylindrical coordinate system (,,8, z) with
o:Ill; , :Ill; Rand 0 :Ill; z :Ill; L associated with the reference state. When the deviated motions arc'
relatively small, the constitutive relations of an incompressible e1astio-plastic solid having
isotropic elastic properties and under continued plastic loading may be written as [5]

. I
s, =2Gf., - - f., + P

g

I
s, =2Gf., + 2g f., +P

I
s,= 2Gf.,+ 2g f., +P

sn=2G£n

(22)

where Gis the elastic shear modulus and p = i(s, +s, + s,). Here and in the remainder of the
paper, the physical components of the deviated Piola-Kirchhoff stresses (s" s" SIt sn) and
deviated Lagrangian strains (£" f." £" £n) are used. For an incompressible material,
f., + £, + £, =0 and 3G =E. From the definition of E, and (22), it follows that[S]

(23)

The equations of deviated motion and associated boundary conditions may be written
as

I o(,s,) oSn I 02U, 02U,
---+---s,+u-=p-, 0' OZ, OZ2 ot2

OS, I 0('In) 02U, o2u,
-+---+u---p­OZ , OZ OZ2 ot2

s,=O} u,=O}
O

for, =R and _ 0 for z = 0, L.
Sn= Sn-

(24)

(25)

(26)

The equations of motion may be expressed in terms of the deviated diaplacement com­
ponents by using the constitutive equations (22) and the following relationships between
strains and displacements:

oU, U, OU, I (OU, Ou,)
£, =a;' f.s =r' £, = oz' £n ='2 oz + 0' .



902 Z. Q. HUANG and L. H. N. LEE

Following the approach by Hutchinson and Miles[S], a function lP(r, z, I), which ensures
the condition of incompressibility, is introduced with

alP
U = -- and

r OZ (27)

Furthermore, the function lP can be written in a separated form

lP =R 2tP(r, I) sin k~Z, k == 1,2,3, ... (28)

such that the boundary conditions on Z == 0, L are satisfied. Using eqns (22}-{28), the
traction-free boundary conditions (25) on the lateral surface can be expressed as

(29)

where

(30)

The operator in (29) is defined by

(31)

It may be shown by further manipulation that eqns (29) may be reduced to a single
constraint equation.

°tP(E, - u +G)' a, + (E, - u - G)tP == 0 on , == 1. (32)

The equations of deviated motion (24) may be further reduced to a single hyperbolic
equation in terms of the function tP subject to the constraint by eqn (32). Instead of solving
this equation directly, the following variational approach is employed.

S. EIGENVECTORS

The quadratic functional Q, by (12), for this case of axisymmetric deformation, may
be specialized to the form
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For small values ofy, the solution of tP may be represented by the following power series[S]

( )
211-1

N (_1),,-1 1.
tP(C, t) = L b,,(t) (_ I)~ , ,211-1.,,_I n .n.

(3S)

The dimensionless amplitudes b,,(t) are subjected· to the traction free boundary condition
(32), or

(
I )211-1

N (-1)"-1 2Y .
L b,,(t) (_ I)' , [(E,- O")n +G(n - I)] =O.,,_I n .n.

(36)

The eigenvalues and eigenvectors of the functional Q may be determined by the extremum
condition. Substituting (3S) into (34) and integrating with respect to C, the functional Q
is reduced to a quadratic form in terms of b,,(t). By introducing Lagrange's multiplier bN + I'

the extremum condition and the condition of constraint may be combined as

(
I )211-1

{

N (_1),,-1 2Y }
c5Q+c5 21CRLbN + 1 L b" (-I)' , [n(E,-O")+G(n-I)] =0.,,_I n .n.

(37)

For a chosen value of t, the variation of (37) with respect to each parameter b,,(t) yields

N+I

L C.,b,,(t)=O, m=I, ... ,N+l.
,,-I

The eigenvalues, «p, may be determined by the characteristic equation

(38)

(39)

The corresponding eigenvectors may be obtained by solving the simultaneous equations

(C_-«,c5->b,,=O, m=I, ... ,N+I,p=I, ... ,N+l. (40)

The eigenvectors may be expressed by the orthogonal transformation

(41)
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For a case of deviated motions from a uniform unperturbed axial motion, the directional
numbers /"., of the eigenvectors "1m are practically constants. Substitution of (41) into (35)
yields

(42)

Substituting (42) into (34) and observing the orthogonal properties of I,." the functional
Q may be expressed in terms of the eigenmodes of motion as

(43)

(45)

where

(
(1)211-1 )2]N+I(-l)"-1 "2

+ II~I (n _ 1)ln! {211-
2
/".

(44)

6. NECKING PROCESS

The functional Q may also be represented by the integral at the right side of (11), or

Q .. Iv p(u,ur +u,u.) d V.



(46)
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By substituting eqns (27), (28), (35) and (41) into (45) and integrating, it is found that

d
2

"Q = npR4L -IC2 LP, dt:"p
p

90S

where

{(
(l')211-1 )2 ( (l')211-1 )2}I N-.(-I)"-I"2 N+I(-l)"-I "2

pp=fo .~I (n-l)lnl C
2II

-
1
l'/", + .~I (n-l)lnl C

2II
-

2
2n1", CdC.

(47)

A variation of the functional Qwith respect to the p th eigenmode of motion leads to the
following uncoupled equations of motion

(48)

(49)

where

Ae(t) = -2(iY~·

Equations (48) describe an axisymmetric necking process accompanying with the axial
stretching of a cylinder. The development of the necking process depends on the function
A,(r).1f A, < 0, the pth mode of motion is oscillatory. If A, > 0 in a time interval, the pth
mode ofmotion grows monotonously in amplitude in the time interval. When the value of
Ap(t) ofa certain mode ofmotion becomes positive at the earliest time (t = 0). it marks the
beginning of the necking process. For that particular mode of deformation. the condition
A,(O) = 0 or «,(0) = O. which corresponds to the quasi-static bifurcation criterion. leads to
the determination ofthe reference state having a true axial stress oftie' For an elastic-plastic
solid having isotropic elastic properties, the value of tie as given by Hutchinson and
Miles[S] may be reduced to that by the following expression

E,e~ tie _l': [E,C~ tic _ ~ _ (E,e~ tie)]+ t9~[1+E,c~ tie (3+~e)

_ 2 ( E,c~ tieY+(E,c~ ticy-~]=o. (SO)

It has been shown by Hutchinson and Miles[S] that the quasi-static bifurcation cannot take
place prior to the maximum tensile load. Denoting the tangent modulus at the maximum
load point by E,"'. the maximum load condition yields· he corresponding true stress tI", =E,"'.
Furthermore. tic> tI",. E,c < E,'" and E,c < tic for a material having properties described by
eqns (1 6}-(19). In a dynamic process ofstretching the cylinder to a state having a true stress
tI greater than tlet as shown by eqn (21). the corresponding E, is such that the value of(tl - E,)
increases as the stretching progresses beyond tie' The value of Ap ofa certain eigenmode of
motion increases positively as (tl - E,) increases. Therefore. this is a principal mechanism
pushing the necking process. In the necking process. all modes of deviated motion may be
excited by the presence of unpreventable. infinitesimal geometric or material imperfections
or initial disturbances. However. only certain modes ofmotion having aljebraicaUy large
values of A" which depend on the geometry. material properties and rate ofstretching, may
grow in amplitude. To determine quantitatively the necking process of an elastic-plastic
cylinder. a numerical procedure and a computer program in double precision based on the
foregoing approach have been developed. Eigenvalues and eigenmodes of motion arc
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determined by a direct method and the integration ofeqn (48) is accomplished by employing
the sixth order Runge-Kutta method. At time increment Lit ofless than 1/50 ofthe shortest
period of any oscillatory motion present in the deviated motion is employed. The power
series by eqn (35) converges rapidly. Therefore, a limited number of terms may be sufficient
to represent a solution. Accordingly, the number of distinct eigenmodes of motion will be
dictated by the number of terms employed in the series representation. However, the
eigenmodes of motion are determined by the extremum conditions of the functional Qand
the respective values of Ap• Thus, the results of a limited series representation may cover
sparsely a whole spectrum of deviated motion. Here, only first six terms of the series are
employed in the computations. A number of cases with various combinations of other
parameters have been considered and are described as follows.

7. NUMERICAL RESULTS

Numerical results have been obtained by the foregoing procedure for a number of
cylinders. Each of the cylinders has initial imperfections leading to an initial state of the
deviated motion respresented by a displacement profile which has the components of all
eigenmodes of deformation of an equal amplitude with ",(0) -: OO1סס.0 and ~p(O) = 0,
p = 1, ... , 6. The typical results are shown in Figs. 1-6. All the cylinders referred to in Figs.
1-6 have the following material properties: ~ = 5, E/IE = 0.1 and various values of eysuch
that, for each cylinder, the quasi-static bifurcation stress (1. agrees with respective E/ and "I
by eqn (50).

Figure I shows the histories of the amplitudes ofa number ofeigenmodes ofmotion of
Case I having the parameters: "I =0.1 and vIc =0.001. The amplitudes of the first and sixth
eigenmodes ofmotion grow with time as soon as the axial true stress exceeds the quasi-static
bifurcation stress (1. or t > O. The first and sixth eigenmodes of motion predominate in the
necking process while all other eigenmodes of motion are oscillatory and remain to be of
small amplitudes in an order of that excited initially. The fifth eigenmode ofmotion is not
shown as it has a much shorter period of oscillation than that of "3 or "4-

Figure 2 shows the amplitudes of a number of eigenmodes of motion of Case 2 having
the parameters: "I =0.2 and vIc =0.001. Similar to that of Case 1, the first and sixth
eigenmode of motion of this case also predominate, except that they grow at somewhat
slower rates. It is noted that the product of V't Ic gives the value of the average axial strain
in addition to that of the reference state. Thus, Cylinder 2 developed a neck of a certain
amplitude at a slightly larger average axial strain than that of Cylinder 1. Figure 3 shows
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Fig. I. Eigenmodes of motion of Case I.
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the normalized radial strain profiles of the six eigenmodes of motion of Case 2, where
i, = £,(O/f.,(O). For each of the cases considered, the eigenvalues and corresponding eigen­
modes of motion are determined at each time increment. An eigenmode shape (or I..) does
change with time but at an insignificant rate. The instantaneous eigenvalues are employed
in integrating equation (48). The normalized radial strain profiles of the eigenmodes of
motion of other cases have patterns and relative orders similar to this case.

.Figure 4 shows the histories of the amplitudes ofa number ofeigenmodes ofmotion of
Case 3 having the parameters: ., =0.4 and vIc =0.001. The second eigenmode of motion
grows in amplitude continuously after T > O. However, the first and sixth cigenmodes of
motion grow at a later time. Cylinder 3develops a neck ofa certain amplitude at an average
axial strain slightly larger than that of Cylinder 2.

Fiaure Sshows the histories of the amplitudes ofa number ofeigenmodes ofmotion of
Case 4 having the parametes:"I =0.1 and vIc - 0.0001. The stretching velocity oflhis case
is one tenth of that of Case 1. The first and sixth cigenmodes of motion also predominate
and grow in amplitude soon after T > 0 at rates also much slower than that ofCase 1. The
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effects of stretching velocity on the rate of necking are illustrated by Fig. 6. Which shows
a neck of a certain amplitude of a cylinder is developed at a shorter time by applying a
greater stetching velocity. However, a neck of a certain amplitude such as that having
£,(1) = -6 x 10-5 oc::curs at a (e vs vIc) ratio of (0.00394 vs 0.0001), (0.()(){j()3 vs 0.0002),
(0.0173 vs 0.001) or (0.078 vs 0.01) for each ofthe four cases shown, respectiwly. It is noted
that the application ofthe current approach to the case ofre1atively hiah stretehin.l velocity
ofvIc - 0.01 may be questionable. It is shown here to indicate a trend. The trend shows that
a necking failure is developed in a cylinder at the quasi-static bifurcation true stress (Ie and
the corresponding average axial strain when the stretching velocity approaches to zero. A
number of other cases having material properties: ;; - Sand E/IE - 0.01 have also been
considered. Their necking patterns and processes are similar to the series presented here
except they have slower necking rates.
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8. CONCLUDING REMARKS

The computer program leading to the numerical results illustrated in paper has certain
limitations. The program has been prepared for cases where the deviated motion is relatively
small, the radius to length ratio "I is relatively small and the wave effects are negligible. With
additional modifications, the concept and approach presented herein may still be applicable
to cases beyond the limitations. The results presented herein do indicate that the problem
of dynamic necking of an elastic-plastic cylinder may be treated as an initial-value­
eigenvalue problem. The eigenmodes of motion can be obtained from a functional Q. The
eigenmodes ofmotion depend on the geometry, material properties and stretching velocity
of the cylinder. The initiation of an eigenmode of motion does require the presence of that
particular mode of initial imperfection or disturbance, no matter how small it is. When all
eigenmodes ofmotion are initially excited, only certain eigenmodes ofmotion predominate
at a time depending on the characteristics of the functional Qwhich describes the intrinsic
interactions between the undisturbed and disturbed motions of the cylinder.

It is noted that the current approach is applicable to systems subjected to generalized
forces which are configuration-dependent. For stability problems involving velocity­
dependent forces, additional considerations are required.
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